A sixth-order dual preserving algorithm for the Camassa–Holm equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sixth-order dual preserving algorithm for the Camassa-Holm equation

The paper presents a sixth-order numerical algorithm for studying the completely integrable CamassHolm (CH) equation. The proposed sixth-order accurate method preserves both the dispersion relation and the Hamiltonians of the CH equation. The CH equation in this study is written as an evolution equation, involving only the first-order spatial derivatives, coupled with the Helmholtz equation. We...

متن کامل

Optimized Sixth-order Monotonicity-Preserving Scheme

In this paper, sixth-order monotonicity-preserving optimized scheme (OMP6) for the numerical solution of conservation laws is developed based on the dispersion and dissipation optimization and monotonicity-preserving technique. The nonlinear spectral analysis is used for the purpose of minimizing the dispersion errors and controlling the dissipation errors. The new scheme (OMP6) is simple in ex...

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A Sixth-Order Nonlinear Parabolic Equation for Quantum Systems

The global-in-time existence of weak nonnegative solutions to a sixth-order nonlinear parabolic equation in one space dimension with periodic boundary conditions is proved. The equation arises from an approximation of the quantum drift-diffusion model for semiconductors and describes the evolution of the electron density in the semiconductor crystal. The existence result is based on two techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2010

ISSN: 0377-0427

DOI: 10.1016/j.cam.2009.11.023